从使用者,DBA,内核开发三个不同角度来分析SQL的性能问题

从使用者,DBA,内核开发三个不同角度来分析SQL的性能问题 ......

有时候写的SQL有性能问题时往往束手无策,而求助于DBA。 今天,我们从使用者、DBA、内核开发三个不同的角度来分析一个有趣的SQL性能问题的案例, 从浅入深了解postgreSQL的优化器。

问题描述

同事A来问我这个假DBA一条SQL的性能问题:

  • A:两条SQL语句只有limit不一样,而limit 1的执行比limit 10的慢N倍
  • 我:是不是缓存问题,先执行limit 10再执行limit 1试试
  • A:......,执行了,limit还是很慢

两条SQL生产环境执行情况

limit 10

1
select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 10;

Execution Time: 1.307 ms

limit 1

1
select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1;

Execution Time: 144.098 ms

分析

执行计划

既然不是缓存问题,那我们先看看执行计划有什么不一样的

limit 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.43..416.25 rows=1 width=73) (actual time=135.213..135.214 rows=1 loops=1)
Output: xxx
-> Index Scan Backward using user_gift_pkey on yay.user_gift (cost=0.43..368000.44 rows=885 width=73) (actual time=135.212..135.212 rows=1 loops=1)
Output: xxx
Filter: ((user_gift.user_id = 11695667) AND (user_gift.user_type = 'default'::user_type))
Rows Removed by Filter: 330192
Planning Time: 0.102 ms
Execution Time: 135.235 ms
(8 rows)

Time: 135.691 ms

limit 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 10;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=868.20..868.22 rows=10 width=73) (actual time=1.543..1.545 rows=10 loops=1)
Output: xxx
-> Sort (cost=868.20..870.41 rows=885 width=73) (actual time=1.543..1.543 rows=10 loops=1)
Output: xxx
Sort Key: user_gift.id DESC
Sort Method: top-N heapsort Memory: 27kB
-> Index Scan using idx_user_type on yay.user_gift (cost=0.56..849.07 rows=885 width=73) (actual time=0.020..1.366 rows=775 loops=1)
Output: xxx
Index Cond: (user_gift.user_id = 11695667)
Filter: (user_gift.user_type = 'default'::user_type)
Planning Time: 0.079 ms
Execution Time: 1.564 ms
(12 rows)

Time: 1.871 ms

可以看到,两个SQL执行计划不一样:

  • limit 1语句 :使用主键进行倒序扫描, Index Scan Backward using user_gift_pkey on yay.user_gift
  • limit 10语句 :使用(user_id, user_type)复合索引直接查找用户数据,Index Scan using idx_user_type on yay.user_gift

为什么执行计划不一样?

total cost

其实postgreSQL的执行计划并没有“问题”,因为limit 1的total cost Limit (cost=0.43..416.25 rows=1 width=73) 是416,run cost是416-0.43=415.57。而limit 10的total cost Limit (cost=868.20..868.22 rows=10 width=73)是868.22。

如果使用Index Scan Backward using user_gift_pkey的方式估算,那么limit 1成本是415, limit 2是415*2=830, limit 3 是 1245,大于868,所以当limit 3的时候会使用Index Scan using idx_user_type扫索引的计划。

验证

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# explain  select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 2;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.43..831.95 rows=2 width=73)
-> Index Scan Backward using user_gift_pkey on user_gift (cost=0.43..367528.67 rows=884 width=73)
Filter: ((user_id = 11695667) AND (user_type = 'default'::user_type))
(3 rows)

Time: 0.341 ms
# explain select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 3;
QUERY PLAN
----------------------------------------------------------------------------------------------------------
Limit (cost=866.19..866.20 rows=3 width=73)
-> Sort (cost=866.19..868.40 rows=884 width=73)
Sort Key: id DESC
-> Index Scan using idx_user_type on user_gift (cost=0.56..854.76 rows=884 width=73)
Index Cond: (user_id = 11695667)
Filter: (user_type = 'default'::user_type)
(6 rows)

Time: 0.352 ms

结果显示:

  • limit 2时,执行计划是Index Scan Backward using user_gift_pkey
  • limit 3时,就改变计划了,Index Scan using idx_user_type on user_gift

实际执行时间

limit 1时成本估算的是416.25,比limit 10868.22还是要快的。
但是实际limit 1执行cost是135.691 ms,而limit 10执行cost是1.871 ms,比limit 10慢了70倍!!!

我们重新执行下explain,加上buffers选项

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# explain (analyze, buffers, verbose)  select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.43..416.29 rows=1 width=73) (actual time=451.542..451.544 rows=1 loops=1)
Output: xxx
Buffers: shared hit=214402 read=5280 dirtied=2302
I/O Timings: read=205.027
-> Index Scan Backward using user_gift_pkey on yay.user_gift (cost=0.43..368032.94 rows=885 width=73) (actual time=451.540..451.540 rows=1 loops=1)
Output: xxx
Filter: ((user_gift.user_id = 11695667) AND (user_gift.user_type = 'default'::user_type))
Rows Removed by Filter: 333462
Buffers: shared hit=214402 read=5280 dirtied=2302
I/O Timings: read=205.027
Planning Time: 1.106 ms
Execution Time: 451.594 ms
(12 rows)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# explain (analyze, buffers, verbose)  select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id desc limit 3;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=860.51..860.52 rows=3 width=73) (actual time=14.633..14.634 rows=3 loops=1)
Output: xxx
Buffers: shared hit=467 read=321
I/O Timings: read=10.112
-> Sort (cost=860.51..862.72 rows=885 width=73) (actual time=14.632..14.632 rows=3 loops=1)
Output: xxx
Sort Key: user_gift.id DESC
Sort Method: top-N heapsort Memory: 25kB
Buffers: shared hit=467 read=321
I/O Timings: read=10.112
-> Index Scan using idx_user_type on yay.user_gift (cost=0.56..849.07 rows=885 width=73) (actual time=0.192..14.424 rows=775 loops=1)
Output: xxx
Index Cond: (user_gift.user_id = 11695667)
Filter: (user_gift.user_type = 'default'::user_type)
Buffers: shared hit=464 read=321
I/O Timings: read=10.112
Planning Time: 0.111 ms
Execution Time: 14.658 ms
(18 rows)

可以看出:

  • limit 1时的IO成本I/O Timings: read=205.027Rows Removed by Filter: 333462显示过滤了333462行记录
  • limit 3时IO成本I/O Timings: read=10.112

从上面输出Buffers: shared hit=214402 read=5280 dirtied=2302可以看出limit 1的计划从磁盘读取了5280个blocks(pages)才找到符合where条件的记录。

为什么要读取这么多数据呢?我们来看看统计信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
schemaname             | yay
tablename | user_gift
attname | id
inherited | f
null_frac | 0
avg_width | 8
n_distinct | -1
most_common_vals |
most_common_freqs |
histogram_bounds | {93,9817,19893,28177,.......}
correlation | 0.788011
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |

schemaname | yay
tablename | user_gift
attname | user_id
inherited | f
null_frac | 0
avg_width | 4
n_distinct | -0.175761
most_common_vals | {11576819,10299480,14020501,.......,11695667,......}
most_common_freqs | {0.000353333,0.000326667,0.000246667,......,9.33333e-05,......}
histogram_bounds | {3,10002181,10005599,10009672,......,11693300,11698290,......}
correlation | 0.53375
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |

schemaname | yay
tablename | user_gift
attname | user_type
inherited | f
null_frac | 0
avg_width | 4
n_distinct | 3
most_common_vals | {default, invalid, deleted}
most_common_freqs | {0.997923,0.00194,0.000136667}
histogram_bounds |
correlation | 0.99763
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |

从统计信息里可以看出:

  • user_id字段的most_common_vals中有11695667(user_id)的值,则可以直接通过其对应的most_common_freqs来得到其selectivity是9.33333e-05;
  • user_type字段为default对应的selectivity是0.997923。
  • 所以where user_id=11695667 and user_type='default'的selectivity是0.0000933333*0.997923 = 0.0000931394467359。

那么可以估算出满足where条件的用户数是0.0000931394467359 * 9499740(总用户数) = 884.8,和执行计划(cost=0.43..367528.67 rows=884 width=73)的884行一样。

而优化器的估算是基于数据分布均匀这个假设的:

  • 从user_gift_pkey(主键id)扫描的话:只要扫描9499740/884=10746行就能找到满足条件的记录,且无须进行排序(order by id desc)
  • 从idx_user_type索引扫描的话:虽然能很快找到此用户的数据,但是需要给884行进行排序,扫描+排序的cost比从主键扫描要高。

那么数据分布真的均匀吗?继续查看数据的实际分布:

  • 表最大的page=128709

    1
    2
    3
    4
    5
    # select max(ctid) from user_gift;
    max
    -------------
    (128709,29)
    (1 row)

  • user id=11695667的最大page=124329

1
2
3
4
5
# select max(ctid), min(ctid) from user_gift where user_id=11695667;
max | min
-------------+-----------
(124329,22) | (3951,64)
(1 row)
  • 表本身的pages和tuples数量
    1
    2
    3
    4
    5
    # SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift';
    relpages | reltuples
    ----------+-------------
    128875 | 9.49974e+06
    (1 row)

每个page存储的记录数:9.49974e+06 tuples / 128875 pages = 73.713 tuples/page。

计算:表(main table)的B+tree的最大page是128709,而实际用户11695667的最大page是124329,128709 - 124329 = 4380,需要扫描4380个page才能找到符合where条件的记录所在的page,所以过滤的rows是4380 pages * 73.713 tuples/page ≈ 322862。

实际limit 1时扫描了5280个pages(包含了主键索引的pages),过滤了333462万行记录,和估算的基本一样:

1
2
3
Rows Removed by Filter: 333462
Buffers: shared hit=214402 read=5280 dirtied=2302
I/O Timings: read=205.027

所以,此用户数据分布倾斜了:

  • 优化器假设数据分布均匀,只需要扫描10746个记录
  • 而实际需要扫描322862个记录

那么扫描5280个pages要多久?

需要读取的数据量:5280pages * 8KB/page = 41.2MB的数据。

1
2
3
4
5
6
7
8
9
[root]$ fio -name iops -rw=randread -bs=8k -runtime=10 -iodepth=1 -filename /dev/sdb -ioengine mmap -buffered=1
...
Run status group 0 (all jobs):
READ: bw=965KiB/s (988kB/s), 965KiB/s-965KiB/s (988kB/s-988kB/s), io=9656KiB (9888kB), run=10005-10005msec

[root]$ fio -name iops -rw=read -bs=8k -runtime=10 -iodepth=1 -filename /dev/sdb -ioengine mmap -direct=1
...
Run status group 0 (all jobs):
READ: bw=513MiB/s (538MB/s), 513MiB/s-513MiB/s (538MB/s-538MB/s), io=5132MiB (5381MB), run=10001-10001msec

fio结果可以看出,此数据库机器磁盘的顺序读取速度约为 500MB/s,如果数据都是顺序的,那么扫描40MB数据需要约80ms,

如果数据都是随机的,那么需要40秒。不是所有的数据都是顺序访问的,而且测试的是非线上机器,没有其他IO进程在运行。

到这里问题基本定位清楚了: > postgreSQL的优化器认为数据分布是均匀的,只需要倒序扫描很快就找到符合条件的记录,而实际上此用户的数据分布在表的前端,就导致了实际执行start-up time如此慢了。

从内核视角来分析

我们从postgreSQL内核的角度来继续分析几个问题:

  • 优化器如何估算cost
  • 优化器如何统计actual time

表的信息

  • 表结构

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    # \d user_gift;
    Table "yay.user_gift"
    Column | Type | Collation | Nullable | Default
    --------------+--------------------------+-----------+----------+------------------------------------------------
    id | bigint | | not null | nextval('user_gift_id_seq'::regclass)
    user_id | integer | | not null |
    ug_name | character varying(100) | | not null |
    expired_time | timestamp with time zone | | | now()
    created_time | timestamp with time zone | | not null | now()
    updated_time | timestamp with time zone | | not null | now()
    user_type | user_type | | not null | 'default'::user_type
    Indexes:
    "user_gift_pkey" PRIMARY KEY, btree (id)
    "idx_user_type" btree (user_id, ug_name)
    "user_gift_ug_name_idx" btree (ug_name)

  • 主键索引

    1
    2
    3
    4
    5
    # SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift_pkey';
    relpages | reltuples
    ----------+-------------
    40035 | 9.49974e+06
    (1 row)

  • user_id 索引

    1
    2
    3
    4
    5
    # SELECT relpages, reltuples FROM pg_class WHERE relname = 'idx_user_type';
    relpages | reltuples
    ----------+-------------
    113572 | 9.49974e+06
    (1 row)

  • 表本身的pages是128875

    1
    2
    3
    4
    5
    # SELECT relpages, reltuples FROM pg_class WHERE relname = 'user_gift';
    relpages | reltuples
    ----------+-------------
    128875 | 9.49974e+06
    (1 row)

  • user id=11695667的数据775行

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    =# select count(1) from user_gift where user_id=11695667;
    count
    -------
    775
    (1 row)

    =# select count(1) from user_gift where user_id=11695667 and user_type = 'default' ;
    count
    -------
    775
    (1 row)

  • 树高度

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    # 主键高度
    # select * from bt_metap('user_gift_pkey');
    magic | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples
    --------+---------+------+-------+----------+-----------+-------------+-------------------------
    340322 | 3 | 412 | 2 | 412 | 2 | 0 | 9.31928e+06
    (1 row)


    // idx_user_type 高度
    # select * from bt_metap('idx_user_type');
    magic | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples
    --------+---------+-------+-------+----------+-----------+-------------+-------------------------
    340322 | 3 | 15094 | 3 | 15094 | 3 | 0 | 9.49974e+06
    (1 row)

估算cost

start-up cost

postgreSQL对于每种索引的成本估算是不一样的,我们看看B+tree的start-up成本是如何估算的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// selfuncs.c
void
btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
Cost *indexStartupCost, Cost *indexTotalCost,
Selectivity *indexSelectivity, double *indexCorrelation,
double *indexPages)
{
......

descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost;
costs.indexStartupCost += descentCost;

......
// This cost is somewhat arbitrarily set at 50x cpu_operator_cost per page touched
descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
costs.indexStartupCost += descentCost;

......
}

其实start-up cost估算很简单,只考虑从B+tree的root page遍历到leaf page,且将这个page读入第一个tuple(记录)的cost。

start-up估算公式如下: \[ \left \{ ceil({\log_2 (N_{index,tuple})}) + (Height_{index} + 1) \times 50 \right \}\ \times cpu\_operator\_cost \]

  • N(index,tuple) :索引tuples(记录)数量
  • Height(index) : 索引B+tree的高度
  • cpu_operator_cost : 默认值0.0025

使用user_gift_pkey计划的start-up cost

从上面表信息中可以看出:

  • N(index,tuple) :9.49974e+06,
  • Height(index) : 2

所以 \[ \left \{ ceil({\log_2 (9499740)}) + (2 + 1) \times 50 \right \}\ \times cpu\_operator\_cost = 173 \times 0.0025 = 0.435 \] 和postgreSQL估算的start-up cost=0.43 一样。

使用idx_user_type计划的start-up cost

  • N(index,tuple) :9.49974e+06,
  • Height(index) : 3 \[ \left \{ ceil({\log_2 (9499740)}) + (3 + 1) \times 50 \right \}\ \times cpu\_operator\_cost = 223 \times 0.0025 = 0.5575 \] 和postgreSQL估算的start-up cost=0.56 一样。

run cost

run cost的估算是比较复杂的,判断的条件非常多,无法用一个固定的公式计算出来,所以这里只是简单描述下,有兴趣的可以看postgreSQL源码src/backend/optimizer/path/costsize.ccost_index函数,针对这个案例,一般情况下可以根据此链接的脚本进行来模拟计算cost。

run cost \[ run\_cost = 索引成本 + 主表成本 \]

索引成本 \[ 索引成本 = 随机读取索引相关pages的成本 + 操作相关tuples的成本 \]

主表成本 \[ 主表成本 = max\_io\_cost + index\_correlation ^ 2 \times (min\_io\_cost - max\_io\_cost) \]

  • ndex_correlation : 索引相关性。索引的顺序与主表数据排列顺序的关联性,用来描述通过索引扫描数据时,回表的顺序读的概率

max io cost(最坏情况下IO成本)

所有pages都是随机读取 \[ max\_io\_cost = pages\_fetched \times random\_page\_cost \]

min_io_cost(最优情况下IO成本)

第一个page是随机读取,后面pages都是顺序读取 \[ min\_io\_cost = 1 \times random\_page\_cost + (pages\_fetched - 1) \times seq\_page\_cost \]

actual start-up time vs estimated start-up cost

刚刚的分析中有一个疑问被忽略了:estimated start-up cost是开始执行计划到从表中读到的第一个tuple的cost(cost is an arbitrary unit);而actual start-up time则是开始执行计划到从表中读取到第一个符合where条件的tuple的时间。这是为什么呢?

SQL处理流程:postgreSQL将SQL转化成AST,然后进行优化,再将AST转成执行器(executor)来实现具体的操作。不进行优化的执行器是这样的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
┌──────────────┐
│ projection │
└──────┬───────┘


┌──────▼──────┐
│ limit │
└──────┬──────┘


┌──────▼──────┐
│ selection │
└──────┬──────┘


┌──────▼──────┐
│ index scan │
└─────────────┘

简化的执行流程如下:

  • index scan executor:扫描到一个tuple,就返回给selection executor
  • selection executor:对tuple进行过滤,如果符合条件则返回给limit executor,如果不符合则继续调用index scan executor
  • limit executor:当达到limit限制则将数据返回给projection executor
  • projection executor:过滤掉非select列的数据

那么如果进行优化,一般会将selection executorprojection executor合并到index scan executor中执行,以减少数据在executor之间的传递。

1
2
3
4
5
6
7
8
9
10
11
┌─────────────┐
│ limit │
└──────┬──────┘


┌──────▼──────┐
│ index scan │
│ │
│ + selection │
│ + projection│
└─────────────┘

优化后的执行流程:

  • index scan executor:扫描到tuple,然后进行selection过滤,如果符合条件就进行projection再返回给limit,如果不符合条件,则继续扫描
  • limit executor:当达到limit限制则将数据返回

而通过下面代码可以看出,postgreSQL对于执行时间的统计是基于executor的,

1
2
3
4
5
6
7
8
9
10
11
12
// src/backend/executor/execProcnode.c
static TupleTableSlot *
ExecProcNodeInstr(PlanState *node)
{
TupleTableSlot *result;
InstrStartNode(node->instrument);
result = node->ExecProcNodeReal(node);

// 统计执行指标
InstrStopNode(node->instrument, TupIsNull(result) ? 0.0 : 1.0);
return result;
}

所以actual time的start-up是从启动executor直到扫描到符合where语句的第一条结果为止。

再看看实际的函数调用栈,user_id=xxx的过滤已经下沉到index scan executor里面了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
--->    int4eq(FunctionCallInfo fcinfo) (/home/ken/cpp/postgres/src/backend/utils/adt/int.c:379)
ExecInterpExpr(ExprState * state, ExprContext * econtext, _Bool * isnull) (/home/ken/cpp/postgres/src/backend/executor/execExprInterp.c:704)
ExecInterpExprStillValid(ExprState * state, ExprContext * econtext, _Bool * isNull) (/home/ken/cpp/postgres/src/backend/executor/execExprInterp.c:1807)
ExecEvalExprSwitchContext(ExprState * state, ExprContext * econtext, _Bool * isNull) (/home/ken/cpp/postgres/src/include/executor/executor.h:322)
---> ExecQual(ExprState * state, ExprContext * econtext) (/home/ken/cpp/postgres/src/include/executor/executor.h:391)
ExecScan(ScanState * node, ExecScanAccessMtd accessMtd, ExecScanRecheckMtd recheckMtd) (/home/ken/cpp/postgres/src/backend/executor/execScan.c:227)
---> ExecIndexScan(PlanState * pstate) (/home/ken/cpp/postgres/src/backend/executor/nodeIndexscan.c:537)
ExecProcNodeInstr(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:466)
ExecProcNodeFirst(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:450)
ExecProcNode(PlanState * node) (/home/ken/cpp/postgres/src/include/executor/executor.h:248)
---> ExecLimit(PlanState * pstate) (/home/ken/cpp/postgres/src/backend/executor/nodeLimit.c:96)
ExecProcNodeInstr(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:466)
ExecProcNodeFirst(PlanState * node) (/home/ken/cpp/postgres/src/backend/executor/execProcnode.c:450)
ExecProcNode(PlanState * node) (/home/ken/cpp/postgres/src/include/executor/executor.h:248)
ExecutePlan(EState * estate, PlanState * planstate, _Bool use_parallel_mode, CmdType operation, _Bool sendTuples, uint64 numberTuples, ScanDirection direction, DestReceiver * dest, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:1632)
standard_ExecutorRun(QueryDesc * queryDesc, ScanDirection direction, uint64 count, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:350)
ExecutorRun(QueryDesc * queryDesc, ScanDirection direction, uint64 count, _Bool execute_once) (/home/ken/cpp/postgres/src/backend/executor/execMain.c:294)
ExplainOnePlan(PlannedStmt * plannedstmt, IntoClause * into, ExplainState * es, const char * queryString, ParamListInfo params, QueryEnvironment * queryEnv, const instr_time * planduration, const BufferUsage * bufusage) (/home/ken/cpp/postgres/src/backend/commands/explain.c:571)
ExplainOneQuery(Query * query, int cursorOptions, IntoClause * into, ExplainState * es, const char * queryString, ParamListInfo params, QueryEnvironment * queryEnv) (/home/ken/cpp/postgres/src/backend/commands/explain.c:404)
ExplainQuery(ParseState * pstate, ExplainStmt * stmt, ParamListInfo params, DestReceiver * dest) (/home/ken/cpp/postgres/src/backend/commands/explain.c:275)

下面代码是scan的实现,其中的ExecQual(qual, econtext)是对tuple进行过滤,因为selection已经合并到scan中了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
TupleTableSlot *
ExecScan(ScanState *node, ExecScanAccessMtd accessMtd, ExecScanRecheckMtd recheckMtd)
{
......
for (;;)
{
TupleTableSlot *slot;
slot = ExecScanFetch(node, accessMtd, recheckMtd);
......
econtext->ecxt_scantuple = slot;

// Note : selection判断
if (qual == NULL || ExecQual(qual, econtext))
{
if (projInfo)
{
return ExecProject(projInfo);
}
else
{
return slot;
}
}
else
InstrCountFiltered1(node, 1);
}
}

解决方案

禁用走主键扫描

既然计划走的是user_gift_pkey倒序扫描,那么我们可以手动避免优化器使用这个索引。

1
# explain analyze verbose select xxx from user_gift where user_id=11695667 and user_type = 'default' order by id+0 desc limit 1;

order by id改成order by id+0,由于id+0是个表达式所以优化器就就不会使用user_gift_pkey这个索引了。

这个方案不适合所有场景,如果数据分布均匀的话则某些情况下使用user_gift_pkey扫描更加合理。

增加(user_id, id)索引

1
create index idx_user_id on user_gift(user_id, id);

通过增加where条件列和排序键的复合索引,来避免走主键扫描。

写在最后

从排除缓存因素,分析查询计划,定位数据分布倾斜,到调试内核源码来进一步确定原因,最终成功解决性能问题。通过这个有趣的SQL优化经历,相信能给大家带来收获。

Donate comment here